Bibliografía de insectos - Cursos_Aula IV

Vaya al Contenido
Bibliografía utilizada para la exposición de los temas. La cita tiene un número entre corchetes [.... ].  Basándose en esta bibliografía se han confeccionado las láminas y dibujos animados.
  • 1.- 1976: Horn, David J. Biology of insects. W.B. Saunders Company, 439 pp.
  • 2.- 1976: Ryuichi Matsuda. Morphology and Evolution of the Insect Abdomen . Pergamon Press. 534 pp.
  • 3.- 1973, R.C.Rainey,F.R.S.  Insect Flight. The Royal Entomological Society by Blackwell Scientific Publications. 287 pp.
  • 4.- 1961, P.P. Grassé, R. Poisson, O. Tuzet.  Zoologie I Invertébrés. Masson et Cie. 9019 pp.
  • 5.-1973, D.T.Anderson. Embryology and phylogeny in annelids and arthropods. Pergamon Press. 495 pp.
  • 6.- 1987, J. d´Aguilar, J.L. Dommanget y R. Ptéchac. Guía de las Libélulas de Europa y África del Norte. Omega. 40 lam. 337 pp.
  • 7.-1967.- E.Ségui. Dictionaire des termes techniques d’entomologie élémentaire.  Éditions Paul Lechevalier.  465 pp.
  • 8.-1968.- Pierre Joly. Endocrinologie des insectes. Masson & Cie. 344 pp.
  • 9.-1988.- C.P.Hickman, L.S.Roberts, A.Parson. Principios integrales de Zoología. McGraw-Hill-Interamericana. 921 pp.
  • 10.-1992.- Robert M. May. Número de especies que habitan la Tierra. Investigación y Ciencia, diciembre 1992.
  • 11.-1998.-H.C. Bennet-Clark. El canto de la cigarra. Investigación y Ciencia, julio 1998.
  • 12.-1995.-Jack Colvad Jones. El comportamiento alimentario de los mosquitos. Investigación y Ciencia. Temas 2 El mundo de los insectos.
  • 13.- 1977.- G.Adrian Horridge. El ojo compuesto de los insectos. Investigación y Ciencia 12, septiembre 1977.
  • 14.- 2015.- Jan Sobotník & Johan Billen- Insect exocrine glands. Arthropod Structure & Development 44, (2015); 399-400.
  • 15.- 2015.- Catherine Nijs & Johan Billen.- Exocrine glands in the legs of the social wasp Vespula vulgaris. Arthropod Structure & Development 44 (2015);433-444.
  • 16.- 2020.- Johan Billen, Chung-Chi Lin, Flavia A. Esteves.- Novel exocrine glands in the foreleg coxae of Discothyrea ants. Arthropod Structure & Development 59 (2020) 100981.
  • 17.- 2008.- André Quennedey, David Sillam-Dussés, Alain Robert, Christian Bordereau.- The fine structural organization of sternal glands of pseudergates and workers in termites (Isoptera): A comparative survey. Arthropod Structure & Development 37 (2008) 168-185.
  • 18.- 2015.- LUIZA CARLA BARBOSA MARTINS, TEREZINHA MARIA CASTRO DELLA LUCIA, WAGNER GONZAGA GONÇALVES, JACQUES HUBERT CHARLES DELABIE, JOSE COLA ZANUNCIO,& JOSE EDUARDO SERRAO.- Intramandibular Glands in Different Castes of Leaf-Cutting Ant, Atta Laevigata (Fr. Smith, 1858) (Formicidae: Attini). MICROSCOPY RESEARCH AND TECHNIQUE 78:603–612 (2015).
  • 19.- 2006.- CONCEICAO A. SANTOS & ANA M. COSTA-LEONARDO.- Anatomy of the Frontal Gland and Ultramorphology of the Frontal Tube in the Soldier Caste of Species of Nasutitermitinae (Isoptera, Termitidae). MICROSCOPY RESEARCH AND TECHNIQUE 69:913–918 (2006).
  • 20.-1986.- Neil F. Hadley.- La cutícula de los artrópodos. Investigación y Ciencia 120: 80-88.
  • 21.-2019.- Jamile Fernanda Silva Cossolin, Luis Carlos Martínez, Monica Josene Barbosa Pereira, Lucia Madalena Vivan, Hakan Bozdoğan, Muhammad Fiaz & José Eduardo Serrão.- Anatomy, Histology, and Ultrastructure of Salivary Glands of the Burrower Bug, Scaptocoris castanea (Hemiptera: Cydnidae). Microscopy and Microanalysis (2019), 25, 1482–1490.
  • 22.-1997.- Astri C. Wayadande, Ginger R. Baker and Jacqueline Fletcher.- COMPARATIVE ULTRASTRUCTURE OF THE SALIVARY GLANDS OF TWO PHYTOPATHOGEN VECTORS, THE BEET LEAFHOPPER, ClRCULIFER TENELLUS (BAKER), AND THE CORN LEAFHOPPER, DALBULUS MAIDIS DELONG AND WOLCOTT (HOMOPTERA : CICADELLIDAE). Int J. insect Morphol & Embriol. 26; 113-120, 1997.
  • 23.-2019.- H. Stetsun, H. Rajabi, N. Matushkina, S.N. Gorb.- Functional morphology of the sting in two digger wasps (Hymenoptera: Crabronidae) with different types of prey transport. Arthropod Structure & Development 52 (2019) 100882.
  • 24.-2018.- Andrew A. Walker, Mark L. Mayhew, Jiayi Jin, Volker Herzig, Eivind A.B. Undheim, Andy Sombke, Bryan G. Fry, David J. Meritt & Glenn F. King.- The assassin bug Pristhesancus plagipennis produces two distinct venoms in separate gland lumens. NATURE COMMUNICATIONS | (2018) 9:755.
  • 25.-2019.- Adam M. Rork, Istvan Miko, Tanya Renner.- Pygidial glands of Harpalus pensylvanicus (Coleoptera: Carabidae) contain resilin-rich structures. Arthropod Structure & Development 49 (2019) 19-25.
  • 26.-2017.- Marija Nenadić & Marina Soković & Jasmina Glamočlija & Ana Ćirić & Vesna Perić-Mataruga & Larisa Ilijin & Vele Tešević & Marina Todosijević & Ljubodrag Vujisić & Nikola Vesović & Srećko Ćurčić.- The pygidial gland secretion of the forest caterpillar hunter, Calosoma (Calosoma) sycophanta: the antimicrobial properties against human pathogens. Appl Microbiol Biotechnol (2017) 101:977–985.
  • 27.-2015.- Sebastian Busse, Thomas Hornschemeyer, Kyle Hohu, David McMillan & Janice S. Edgerly.- The spinning apparatus of webspinners –functional-morphology, morphometrics and spinning behaviour. SCIENTIFIC REPORTS | 5: 9986 |.
  • 28.-2011.- Nicholas N. Ashton, Daniel S. Taggart, Russell J. Stewart.- Silk Tape Nanostructure and Silk Gland Anatomy of Trichoptera. Biopolymers 97 (6); 432-445.
  • 29.-2020.- Hongyuan Wei, Johan Billen, Ying Yang, Ping Liu, Shuxia Shao, Xiaoming Chen, Zixiang Yang.- Wax glands of the horned gall aphid, Schlechtendalia chinensis, at different stages. Arthropod Structure & Development 58 (2020) 100976.
  • 30.-2017.- Mariusz Kanturski, Jagna Karcz, Natalia Kaszyca, Łukasz Depa.- Perianal structures in myrmecophilous subterranean aphids (Insecta: Hemiptera: Aphididae) e Comparative morphology of trophobiotic organ with its first description in Lachninae. Arthropod Structure & Development 46 (2017) 496-507.
  • 31.-2016.- Rakkiyappan Chandrana, Lee Williamsa, Albert Hungb, Kyle Nowlina, Dennis LaJeunessea.- SEM characterization of anatomical variation in chitin organization ininsect and arthropod cuticles.- Micron 82 (2016) 74–85.
  • 32.-2014.- Nickerl J, Tsurkan M, Hensel R, Neinhuis C, Werner C. .- The multilayered protective cuticle of Collembola: a chemical analysis. J. R. Soc. Interface 11:20140619.
  • 33.-2017.- Yiwen Wang, Renata Zuber, Annette Laudahn, Jürgen Berger, Bernard Moussian.- Cuticular body hairs mediate clumping of small Camponotus floridanus larvae. Arthropod Structure & Development 46 (2017) 108-115.
  • 34.-2020.- G. A. Mahadik, J. F . Hernandez-Sanchez, S. Arunachalam, A. Gallo Jr., L. Cheng,A. S. Farinha, S. T . Thoroddsen, H. Mishra & Carlos M. Duarte.- Superhydrophobicity and size reduction enabled Halobates (Insecta: Heteroptera, Gerridae) to colonize the open ocean. Scientific Reports | (2020) 10:7785.
  • 35.-2021.- Genta Okude and Ryo Futahashi.- Pigmentation and color pattern diversity in Odonata.Current Opinion in Genetics & Development 2021, 69:14–20.
  • 36.-2019.- Toshiya Ando andTeruyuki Niimi1.- Development and evolution of color patterns in ladybird beetles: A case study in Harmonia axyridis. Develop Growth Differ. 2019;61:73–84.
  • 37.-2017.- H.Joachim Schlichting.- Joyas vivas. Investigación y Ciencia, agosto 2017; 82-83.
  • 38.-2017.- Gonzague Agez, Chloé Bayon, Michel Mitov.- Multiwavelength micromirrors in the cuticle of scarab beetle Chrysina gloriosa. Acta Biomaterialia 48 (2017) 357–367.
  • 39.-2018.- Danica Pavlovića, Darko Vasiljevića, Branislav Salatića, Vladimir Lazovića, Goran Dikićb,Ljubiša Tomićc, Srećko Ćurčićd, Petar Milovanoviće, Dajana Todorovićf, Dejan V. Pantelića.- Photonic structures improve radiative heat exchange of Rosalia alpina (Coleoptera: Cerambycidae). Journal of Thermal Biology 76 (2018) 126–138.
  • 40.-2020.- Carlos Andres Salinas-Soto & Consuelo Garcıa Alcantara & Beatriz Marcela Millan Malo & Saul Ivan Hernandez Hernandez & Enrique Dıaz Herrera. Efecto de la quiralidad en las fases de un cristal líquido discótico. Coloquio de Supercomputo 2020. Licencia Creative Commons Attribution-ShareAlike 3.0 IGO.
  • 41.-2016.- Alexander Blanke & Ryuichiro Machida.- The homology of cephalic muscles and endoskeletal elements between Diplura and Ectognatha (Insecta). Org Divers Evol (2016) 16:241–257.
  • 42.-2019.- Hiroshi Kubota, Jin Yoshimura, Shuhei Niitsu & Akira Shimizu.- Morphology of the tentorium in the ant genus Lasius Fabricius (Hymenoptera: Formicidae). Scientific Reports (2019) 9:6722.
  • 43.-2008.- Yoshichika Baba & Christopher M. Comer.- Antennal motor system of the cockroach, Periplaneta americana. Cell Tissue Res (2008) 331:751–762.
  • 44.- 2004.- Jean S. Deutsch.- Segments and parasegments in Arthropods: a functional perspective . BioEssays 26:1117–1125.
  • 45.-1978.- Edward B. Lewis.- A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).
  • 46.-1986.- Gines Morata, Ernesto Sanchez-Herrero and Jordi Casanova.- The bithorax complex of Drosophila: an overview. Cell Differentiation, 18 (1986) 67-78.
  • 47.-1987.- M. BENDER, F .R. TURNER, AND T.C. KAUFMAN.- A Developmental Genetic Analysis of the Gene Regulator of postbithorax in Drosophila melanogaster. DEVELOPMENTAL BIOLOGY 119,418-432 (1987).
  • 48.- 2021.- Serna, F., and Mackay, W.- A Descriptive Morphology of the Ant Genus Procryptocerus (Hymenoptera: Formicidae). Journal of Insect Science, 10(111) : 1-36.
  • 49.-2006.- Gerhard Scholtz & Gregory D. Edgecombe.- The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol (2006) 216: 395–415.
  • 50.-2001.- Volker nurr,Yvonne Konig &Rolf Kittmann.- The antennal motor system of the stick insect Carausius morosus : anatomy and antennal movement pattern during walking. J Comp Physiol A (2001) 187: 131-144-
  • 51.-2014.- Marco Gottardo & Davide Vallotto.- External macro- and micromorphology of the male of the stick insect Hermarchus leytensis (Insecta: Phasmatodea) with phylogenetic considerations. C. R. Biologies 337 (2014) 258–268.
  • 52.-2020.- David M. Linz and Armin P. Moczek.- Integrating evolutionarily novel horns within the deeply conserved insect head. Linz and Moczek BMC Biology (2020) 18:41.
  • 53.-2019.- Adrian Richter, Roberto A. Keller, Felix Baumgarten Rosumek,Evan P. Economo, Francisco Hita Garcia, Rolf G. Beutel.- The cephalic anatomy of workers of the ant species Wasmannia affinis (Formicidae, Hymenoptera, Insecta) and its evolutionary implications. Arthropod Structure & Development 49 (2019) 26-49.
  • 54.-2012.- Katrin Friedemann, Benjamin Wipfler, Sven Bradler and Rolf Georg Beutel.- On the headmorphology of Phyllium and the phylogenetic relationships of Phasmatodea (Insecta). Acta Zoologica (Stockholm) 93: 184–199 (April 2012).
  • 55.-2007.- Rolf Georg Beutela, Lars Vilhelmsenb.- Head anatomy of Xyelidae (Hexapoda: Hymenoptera) and phylogenetic implications. Organisms, Diversity & Evolution 7 (2007) 207–230.
  • 56.- 2020.- Wei Zhang, Minghao Li, Guobin Zheng, Zijin Guan, Jianing Wu, Zhigang Wu.- Multifunctional mandibles of ants: Variation in gripping behavior facilitated by specific microstructures and kinematics. Journal of Insect Physiology 120 (2020) 103993.
  • 57.- 2017.-  Alexander Blanke, Helmut Schmitz, Alessandra Patera, Hugo Dutel and Michael J. Fagan.- Form–function relationships in dragonfly mandibles under an evolutionary perspective. rsif.royalsocietypublishing.org J. R. Soc. Interface 14: 20161038.
  • 58.- 2018.- Bharat Bhushan.- Insects locomotion, piercing, sucking and stinging mechanisms. Microsystem Technologies (2018) 24:4703–4728.
  • 59.-2012.- BO HEUM KIM, EUN SEOK SEO, JAE HONG LIM, AND SANG JOON LEE.- Synchrotron X-Ray Microscopic Computed Tomography of the Pump System of a Female Mosquito. MICROSCOPY RESEARCH AND TECHNIQUE 75:1051–1058 (2012).
  • 60.- 2021.- J. F. ESQUIVEL.- Stylet Penetration Estimates for a Suite of Phytophagous Hemipteran Pests of Row Crops. ENVIRONMENTAL ENTOMOLOGY Vol. 44, no. 3.
  • 61.- 2019.- Ruschioni S, Ranieri E, Riolo P, Romani R, Almeida RPP, Isidoro N .-Functional anatomy of the precibarial valve in Philaenus spumarius (L.). PLoS ONE 14(2): e0213318.
  • 62.- 2017.- Konstantin G. Kornev, Arthur A. Salamatin, Peter H. Adler & Charles E. Beard.- Structural and physical determinants of the proboscis–sucking pump complex in the evolution of fluid-feeding insects. Scientific REPORTS | 7: 6582 |.
  • 63.-2021.- Artur A. Salamatin, Peter H. Adler, Konstantin G. Kornev.- Lepidopteran mouthpart architecture suggests a new mechanism of fluid uptake by insects with long proboscises. Journal of Theoretical Biology 510 (2021) 110525.
  • 64.-2011.- Julia A.S. Bauder, Nora R. Lieskonig, Harald W. Krenn.- The extremely long-tongued Neotropical butterfly Eurybia lycisca (Riodinidae): Proboscis morphology and flower handling. Arthropod Structure & Development 40 (2011) 122-127.
  • 65.-2017.- Lehnert MS, Bennett A, Reiter KE, Gerard PD, Wei Q-H, Byler M, Yan H, Lee W-K. 2017 Mouthpart conduit sizes of fluid-feeding insects determine the ability to feed from pores. Proc. R. Soc. B 284:20162026.
  • 66.- 2002.- Harald W. Krenna, Volker Mauss, John Plant.- Evolution of the suctorial proboscis in pollen wasps (Masarinae, Vespidae). Arthropod Structure & Development 31 (2002) 103–120.
  • 67.-2021.- Zike He, Wei Zhang, Yu Sun, Chuchu Li, Jianing Wu, Zhigang Wu.- How honey bees dip nectar: Dynamic spacing of tongue hairs facilitates to collect nectar of various viscosities. Journal of Theoretical Biology 512 (2021) 110538.
  • 68.-2019.- Melin A, Krenn HW, Bowie RCK, Beale CM, Manning JC, Colville JF.- The allometry of proboscis length in Melittidae (Hymenoptera: Apoidae) and an estimate of their foraging distance using museum collections. PLoS ONE 14(6):e0217839.
  • 69.-2017.- Fanny Leubner, Sven Bradler, Benjamin Wipfler.- The thoracic morphology of the wingless dune cricket Comicus calcaris (Orthoptera: Schizodactylidae): Novel apomorphic characters for the group and adaptations to sand desert environments. Arthropod Structure & Development 46 (2017) 449-461.
  • 70.-2019.- Yonggang Hu, David M. Linz, Armin P. Moczek.- Beetle horns evolved from wing serial homologs. Hu et al., Science 366, 1004–1007 (2019).
  • 71.-2019.- Kota Sakagami & Shinji Sugiura.- Noctuid moths as pollinators of Habenaria sagittifera (Orchidaceae): floral adaptations for the transfer of pollinaria on the thoraxes
  • of moths. The Science of Nature (2019) 106: 58.
  • 72.-2019.- Margarita I. Yavorskaya, Rolf G. Beutel, Sergey E. Farisenkov, Alexey A. Polilov.- The locomotor apparatus of one of the smallest beetles e The thoracic
  • skeletomuscular system of Nephanes titan (Coleoptera, Ptiliidae). Arthropod Structure & Development 48 (2019) 71-82.
  • 73.-2017.- Naoki Ogawa & Kazunori Yoshizawa.- Morphological dissection of behavior: thoracic musculature clarifies independent development of jumping mechanisms between sister groups, planthoppers and leafhoppers (Insecta:
  • Hemiptera: Auchenorrhyncha). Org Divers Evol (2017) 17:521–530.
  • 74.-1998.- ULRICH E. STEGMANN.- An Exaggerated Trait in Insects: The Prothoracic Skeleton of Stictocephala bisonia (Homoptera: Membracidae). JOURNAL OF MORPHOLOGY 238:157–178 (1998).
  • 75.-2015.- Victor Medveda, James H. Mardenb, Howard W. Fescemyerb, Joshua P. Derb,Jin Liua, Najmus Mahfooza, and Aleksandar Popadic.- Origin and diversification of wings: Insights from a neopteran insect. PNAS | December 29, 2015 | vol. 112 | no. 52 | 15949.
  • 76.-2007.- Jana Willkommen, Thomas Hornschemeyer.- The homology of wing base sclerites and flight muscles in Ephemeroptera and Neoptera and the morphology of the pterothorax of Habroleptoides confusa (Insecta: Ephemeroptera: Leptophlebiidae). Arthropod Structure & Development 36 (2007) 253-269.
  • 77.-2014.- Zhao C, Liu X, Yang D (2014) Wing Base Structural Data Support the Sister Relationship of Megaloptera and Neuroptera (Insecta: Neuropterida). PLoS ONE 9(12): e114695. doi:10. 1371/journal.pone.0114695.
  • 78.-2014.-Roberto A Keller, Christian Peeters, Patrícia Beldade.- Evolution of thorax architecture in ant castes highlights trade-off between flight and ground behaviors.  eLife 2014;3:e01539.
  • 79.-2018.- Fabian Baumler, Stanislav N. Gorb, Sebastian Büsse.- Comparative morphology of the thorax musculature of adult Anisoptera (Insecta: Odonata): Functional aspects of the flight apparatus. Arthropod Structure & Development 47 (2018) 430-441.
  • 80.-2017.- Tanvi Deora, Namrata Gundiah and Sanjay P. Sane.- Mechanics of the thorax in flies. Journal of Experimental Biology (2017) 220, 1382-1395.
  • 81.-2016.- Bomphrey RJ, Nakata T, Henningsson P, Lin H-T.- Flight of the dragonflies and damselflies. Phil. Trans. R. Soc. B 371: 20150389.
  • 82.-2007.- Yukitaka Ishimoto,  Kaoru Sugimura.- A mechanical model for diversified insect wing margin shapes. Journal of Theoretical Biology 427 (2017) 17–27.
  • 83.-2014.- Siti Fauziyah, Catharina Alam, R.C.H. Soesilohadi, Bambang Retnoaji, Parvez Alam.- Morphological and mechanical characterisation of the hindwing nodus from the Libellulidae family of dragonfly (Indonesia). Arthropod Structure & Development 43 (2014) 415-422.
  • 84.-2015.- Leonid Frantsevich, Stanislav Gorb, Vladimir Radchenko, Dmytro Gladun, Alexey Polilov, Lyubov Cherney, Vassily Browdy, Maxim Kovalev.- Lehr's fields of campaniform sensilla in beetles (Coleoptera): Functional morphology. II. Wing reduction and the sensory field. Arthropod Structure & Development 44 (2015) 1-9.
  • 85.-2018.- Paavo Bergmann, Sandra Richter, Nina Gl€ockner, Oliver Betz.-  Morphology of hindwing veins in the shield bug Graphosoma italicum (Heteroptera: Pentatomidae).- Arthropod Structure & Development 47 (2018) 375-390.
  • 86.-2018.- Naoki Ogawa, Kazunori Yoshizawa.- Structure and evolution of the stigmapophysis-A unique repose wing-coupling structure in Psocodea. Arthropod Structure & Development 47 (2018) 416-422.
  • 87.-2019.- Yun Ma, Chao Wan, Stanislav Gorb, Hamed Rajabi.- Biomechanics of fore wing to hind wing coupling in the southern green stink bug Nezara viridula (Pentatomidae). Acta Biomaterialia 100 (2019) 10–17.
  • 88.- 2019.- Jiyu Suna, Chao Liua, Bharat Bhushan.- A review of beetle hindwings: Structure, mechanical properties, mechanism and bioinspiration. Journal of the Mechanical Behavior of Biomedical Materials 94 (2019) 63–73.
  • 89.- 2017.- Jakub Prokop, Martina Pecharova, Andre Nel, Thomas Hornschemeyer, Ewa Krzeminska, Wies1aw Krzeminski and Michael S. Engel.- Paleozoic Nymphal Wing Pads Support Dual Model of Insect Wing Origins. Current Biology 27, 263–269 January 23, 2017.
  • 90.- 2015.- Yun Ma, Jian Guo Ning, Hui Lan Ren, Peng Fei Zhang and Hong Yan Zhao.- The function of resilin in honeybee wings. The Journal of Experimental Biology (2015) 218, 2136-2142.
  • 91.- 2016.- Aare Kuusik, Katrin Jõgar, Luule Metspalu, Angela Ploomi, Enno Merivee, Anne Must, Ingrid H.Williams, Kü lli Hiiesaar, Ivar Sibul and Marika Mänd.- The opening–closing rhythms of the subelytral cavity associated with gas exchange patterns in diapausing Colorado potato beetle, Leptinotarsa decemlineata.  Journal of Experimental Biology (2016) 219, 3412-3419.
  • 92.- 2016.- Shannon K. Jones, Young J. J. Yun1, Tyson L. Hedrick, Boyce E. Griffith and Laura A. Miller.- Bristles reduce the force required to ‘fling’ wings apart in the smallest insects. Journal of Experimental Biology (2016) 219, 3759-3772.
  • 93.-2018.- Jordan Hoffmanna, Seth Donougheb, Kathy Lic, Mary K. Salcedod, and Chris H. Rycrofta. A simple developmental model recapitulates complex insect wing venation patterns. PNAS, October 2, 2018,vol. 115, no. 40; 9905–9910.
  • 94.-2014.- Kazuya Saitoa, Shuhei Yamamotob, Munetoshi Maruyamac, and Yoji Okabea.- Asymmetric hindwing foldings in rove beetles. PNAS ,November 18, 2014 , vol. 111, no. 46 ;16349–16352.
  • 95.-2016.- Piszter G, KerteÂsz K, BaÂlint Z, Biro LP.- Variability of the Structural Coloration in Two Butterfly Species with Different Prezygotic Mating Strategies. PLoS ONE 11(11).
  • 96.- 2018.- Kilchoer C, Steiner U, Wilts BD. - Thin-film structural coloration from simple fused scales in moths. Interface Focus 9: 20180044.
  • 97.-2008.- Yoshinori Tomoyasu, Yasuyuki Arakane, Karl J. Kramer, and Robin E. Denell.- Repeated Co-options of Exoskeleton Formation during Wing-to-Elytron Evolution in Beetles. Current Biology 19, 2057–2065.
  • 98.-1988.- Stanislav N. Gorb­.- FRICTIONAL SURFACES OF THE  ELYTRA-TO-BODY ARRESTING MECHANISM IN TENEBRIONID BEETLES (COLEOPTERA TENEBRIONIDAE) DESIGN OF CO-OPTED FIELDS OF MICROTRICHIA AND CUTICLE ULTRASTRUCTURE. Int.J. Insect Morphol & Embryol. 27(3); 205-225.
  • 99.- 2018.- Robert Dudley, Günther Pass.- Wings and powered flight: Core novelties in insect evolution. Arthropod Structure & Development 47 (2018) 319-321.
  • 100.- 2019.- Christopher R. Day, Joseph J. Hanly, Anna Ren, Arnaud Martin.  Sub-micrometer insights into the cytoskeletal dynamics and ultrastructural diversity of butterfly wing scales. Developmental Dynamics. 2019; 248:657–670.
  • 101.- 2001.- Thomas J. Simonsen.- The wing vestiture of the non-ditrysian Lepidoptera (Insecta). Comparative morphology and phylogenetic implications. Acta Zoologica (Stockholm) 82: 275–298 (October 2001).
  • 102.- 2018.- Lauriane Jacquelin, Laure Desutter-Grandcolas, Ioana Chintauan-Marquier, Renaud Boiste, Daran Zheng, Jakub Prokop & André Nel.- New insights on basivenal sclerites using 3D tools and homology of wing veins in Odonatoptera (Insecta).  Scientific REPORTS (2018), 8:238.
  • 103.-2015.- Esther Appel, Lars Heepe, Chung-Ping Lin and Stanislav N. Gorb.- Ultrastructure of dragonfly wing veins: composite structure of fibrous material supplemented by resilin. J. Anat. (2015) 227; 561-582.
  • 104.- 2012.- Mingxia Sun, Aiping Liang, Gregory S. Watson, Jolanta A. Watson, Yongmei Zheng, Jie Ju, Lei Jiang.- Influence of Cuticle Nanostructuring on the Wetting Behaviour/States on Cicada Wings. PLoS ONE 7(4): e35056.
  • 105.- 2019.- Xin Li,  Ce Guo.- Structural characteristics analysis of the hind wings in a bamboo weevil (Cyrtotrachelus buqueti). IET Nanobiotechnol., 2019, Vol. 13 Iss. 8, pp. 850-856.
  • 106.- 2019.- Juliet Sackey, Zebib Yenus Nuru, Nkosi Mlungisin, Malik Maaza.- Investigation of the morphological cell structures and their optical significances of Aeshna cyanea. IET Nanobiotechnol., 2019, Vol. 13 Iss. 8, pp. 857-859.
  • 107.- 2019.- Xin Li,  Ce Guo.- Microstructure and material properties of hind wings of a bamboo weevil Cyrtotrachelus buqueti (Coleoptera: Curculionidae). Microsc Res Tech. 2019;82:1102–1113.
  • 108.-2017.- Naoki Ogawa, Kazunori Yoshizawa.- Origin and transformation of the in-flight wing-coupling structure in Psocodea (Insecta: Paraneoptera). Journal of Morphology. 2018;279:517–530.
  • 109.-2017.- Gizem Oguz, Ozge Erisoz Kasap, and Bulent Alten.- Wing morphology variations in a natural population of Phlebotomus tobbi Adler and Theodor 1930. Journal of Vector Ecology, Vol. 42, no. 2 ; 223-232.
  • 110.- 2016.- Rajabi H, Ghoroubi N, Malaki M, Darvizeh A, Gorb SN.-  Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation. PLoS ONE 11(8): e0160610.
  • 111.- 2018.- Limsopatham K, Hall MJR, Zehner R, Zajac BK, Verhoff MA, Sontigun N, et al. .- A molecular, morphological, and physiological comparison of English and German populations of Calliphora vicina (Diptera: Calliphoridae). PloS ONE 13(12): e0207188.
  • 112.-
  • 113.- 2020.- Cheng-Chia Tsai, Richard A. Childers, Norman Nan Shi, Crystal Ren, Julianne N. Pelaez, Gary D. Bernard, Naomi E. Pierce & Nanfang Yu.- Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. NATURE COMMUNICATIONS, (2020), 11:551.
  • 114.- 2017.- Roohollah Abbasi & Jeffrey M. Marcus.- A new A-P compartment boundary and organizer in holometabolous insect wings. SCIENTIFIC REPORTS,| 7: 16337.
  • 115.- 2016.- H. Rajabi, A. Shafiei, A. Darvizeh & S. N. Gorb.- Resilin microjoints: a smart design strategy to avoid failure in dragonfly wings. Scientific Reports, 6:39039.
  • 116.-2017.-  Nathan Slegers, Michael Heilman, Jacob Cranford, Amy Lang, John Yoder and Maria Laura Habegger.- Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies. Bioinspir. Biomim. 12 (2017) 016013.
  • 117.- 2017.- H. Rajabi, N. Ghoroubi, K. Stamm, E. Appel, S.N. Gorb.- Dragonfly wing nodus: A one-way hinge contributing to the asymmetric wing deformation. Acta Biomaterialia 60 (2017) 330–338.
  • 118.- 2017.- Amador GJ, Endlein T, Sitti M. .- Soiled adhesive pads shear clean by slipping: a robust self-cleaning mechanism in climbing beetles. J. R. Soc. Interface 14: 20170134.
  • 119.- 2017.- Gernay SM, Labousse S, Lambert P, Compe`re P, Gilet T. .-Multi-scale tarsal adhesion kinematics of freely-walking dock beetles. J. R. Soc. Interface 14: 20170493.
  • 120.- 2017.- Christian Schmitt1 & Oliver Betz.- Morphology and ultrastructure of the tarsal adhesive organs of theMadagascar hissing cockroach Gromphadorhina portentosa. Cell Tissue Res (2017) 370:243–265.
  • 121.- 2018.- Gianandrea Salerno, Manuela Rebora, Alexander Kovalev, Elena Gor, Stanislav Gorb.- Contribution of different tarsal attachment devices to the overall attachment ability of the stink bug Nezara viridula. Journal of Comparative Physiology A (2018) 204:627–638.
  • 122.- 2015.- Grohmann C, Henze MJ, Nørgaard T, Gorb SN. .- Two functional types of attachment pads on a single foot in the Namibia bush cricket Acanthoproctus diadematus (Orthoptera: Tettigoniidae). Proc. R. Soc. B 282: 20142976.
  • 123.- 1995.- Jearl Walker.- Contemplando la conducta de los zapateros, insectos que patinan y corren sobre el agua. Temas 2 Investigación y Ciencia.
  • 124.- 2014.- Katrin Friedemann and Rolf G. Beutel.- Morphology of Arolia in Auchenorrhyncha (Insecta, Hemiptera). JOURNAL OF MORPHOLOGY 275:1217–1225 (2014).
  • 125.- 2004.- Walter Federle, Thomas Endlein.- Locomotion and adhesion: dynamic control of adhesive surface contact in ants. Arthropod Structure & Development 33 (2004) 67–75.
  • 126.- 2016.- Sophie Gernay, Walter Federle, Pierre Lambert and Tristan Gilet.- Elasto-capillarity in insect fibrillar adhesion. J. R. Soc. Interface 13:20160371.
  • 127.- 2016.- Hiroshi Nishino & Hiromi Mukai & Takuma Takanashi.- Chordotonal organs in hemipteran insects: unique peripheral structures but conserved central organization revealed by comparative neuroanatomy. Cell Tissue Res (2016) 366:549–572.
  • 128.- 2016.- Parle E, Larmon H, Taylor D.-Biomechanical Factors in the Adaptations of Insect Tibia Cuticle. PLoS ONE 11(8): e0159262.
  • 129.- 2016.- Antonin J.J. Crumiere, M. Emilia Santos, Marie Semon, David Armisen, Felipe F.F. Moreira, and Abderrahman Khila.- Diversity in Morphology and Locomotory Behavior Is Associated with Niche Expansion in the Semi-aquatic Bugs. Current Biology 26, 3336–3342.
  • 130.- 2016.- Eunjin Yang, Jae Hak Son, Sang-im Lee, Piotr G. Jablonski & Ho-Young Kim.- Water striders adjust leg movement speed to optimize takeoff velocity for their morphology. NATURE COMMUNICATIONS.
  • 131.- 2004.- Justin E. Seipel, Philip J. Holmes, Robert J. Full.- Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions.- Biol. Cybern. 91, 76–90 (2004).
  • 132.-2019.- Sarah Elisabeth Pfeffer, Verena Luisa Wahl, Matthias Wittlinger and Harald Wolf.- High-speed locomotion in the Saharan silver ant, Cataglyphis bombycina. Journal of Experimental Biology (2019) 222.
  • 133.-2015.- Leslie M. Theunissen, Holger H. Bekemeier and Volker Dürr.- Comparative whole-body kinematics of closely related insect species with different body morphology. The Journal of Experimental Biology (2015) 218, 340-352.
  • 134.- 2017.- Elzbieta Godlewska‑Hammel, Ansgar Büschges, Matthias Gruhn.- Fiber‑type distribution in insect leg muscles parallels similarities and differences in the functional role of insect walking legs. J Comp Physiol A (2017) 203:773–790.
  • 135.- 2002.- I. HASENFUSS.- A possible evolutionary pathway to insect flight starting from lepismatid organization. J. Zool. Syst. Evol. Research 40 (2002) 65–81.
  • 136.- 2014.- Philipp Bußhardt and  Stanislav N. Gorb.- Ground reaction forces in vertically ascending beetles and corresponding activity of the claw retractor muscle on smooth and rough substrates. J Comp Physiol A (2014) 200:385–398.
  • 137.- 2009.- Loris Al Bitar, Dagmar Voigt, Claus P.W. Zebitz, Stanislav N. Gorb.- Tarsal morphology and attachment ability of the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae) to smooth surfaces. Journal of Insect Physiology 55 (2009) 1029–1038.
  • 138.- 2016.- Konstantin Nadein and Oliver Betz.- Jumping mechanisms and performance in beetles. I. Flea beetles (Coleoptera: Chrysomelidae: Alticini). Journal of Experimental Biology (2016) 219, 2015-2027.
  • 139.- 2017.- M. Burrows and M. Dorosenko.- Jumping performance of flea hoppers and other mirid bugs (Hemiptera, Miridae). Journal of Experimental Biology (2017) 220, 1606-1617.
  • 140.- 2017.- Clemente CJ, Goetzke HH, Bullock JMR, Sutton GP, Burrows M, Federle W..-  Jumping without slipping: leafhoppers (Hemiptera: Cicadellidae) possess special tarsal structures for jumping from smooth surfaces. J. R. Soc. Interface 14: 20170022.
  • 141.- 2007.- Malcolm Burrows.- Anatomy of the hind legs and actions of their muscles during jumping in leafhopper insects. The Journal of Experimental Biology 210, 3590-3600.
  • 142.- 2014.- Malcolm Burrows and Marina Dorosenko.- Jumping mechanisms in lacewings (Neuroptera, Chrysopidae and Hemerobiidae). The Journal of Experimental Biology (2014) 217, 4252-4261.
  • 143.- 2010.- M. Burrows and M. D. Picker.- Jumping mechanisms and performance of pygmy mole crickets (Orthoptera, Tridactylidae). The Journal of Experimental Biology 213, 2386-2398.
  • 144.- 2017.- Jun Kyun Oh, Spencer T. Behmer, Richelle Marquess, Cengiz Yegin, Ethan A. Scholar, Mustafa Akbulut.- Structural, tribological, and mechanical properties of the hind leg joint of a jumping insect: Using katydids to inform bioinspired lubrication systems. Acta Biomaterialia 62 (2017) 284–292.
  • 145.-2015.- Malcolm Burrows and Marina Dorosenko.- Jumping mechanisms in adult caddis flies (Insecta, Trichoptera). The Journal of Experimental Biology (2015) 218, 2764-2774.
  • 146.- 2017.- Daniel B. Zurek, Stanislav N. Gorb, Dagmar Voigt.- Changes in tarsal morphology and attachment ability to rough surfaces during ontogenesis in the beetle Gastrophysa viridula (Coleoptera, Chrysomelidae). Arthropod Structure & Development 46 (2017) 130-137.
  • 147.- 2004.- Fabian Haas, Stanislav Gorb.- Evolution of locomotory attachment pads in the Dermaptera (Insecta). Arthropod Structure & Development 33 (2004) 45–66.
  • 148.- 2017.- Gilson R.P. Moreira, Denis S. Silva, Gislene L. Gonçalves.- Comparative morphology of the prothoracic leg in heliconian butterflies: Tracing size allometry, podite fusions and losses in ontogeny and phylogeny. Arthropod Structure & Development 46 (2017) 462-471.
  • 149.-2004.- Hans Pohl, Rolf. G. Beutel.- Fine structure of adhesive devices of Strepsiptera (Insecta). Arthropod Structure & Development 33 (2004) 31–43.
  • 150.- 2016.- Haripriya Mukundarajan, Thibaut C. Bardon, Dong Hyun Kim and Manu Prakash.- Surface tension dominates insect flight on fluid interfaces. Journal of Experimental Biology (2016) 219, 752-766.
  • 151.-2000.- SASHA ZILL, S. FAITH FRAZIER, DAVID NEFF, LAURA QUIMBY, MICHELLE CARNEY, RALPH DICAPRIO, JEFFREY THUMA, AND MICHAEL NORTON.- Three-Dimensional Graphic Reconstruction of the Insect Exoskeleton Through Confocal Imaging of Endogenous Fluorescence. MICROSCOPY RESEARCH AND TECHNIQUE 48:367–384 (2000).
  • 152.- 2004.- Leonid Frantsevicha, Stanislav Gorba.- Structure and mechanics of the tarsal chain in the hornet, Vespa crabro (Hymenoptera: Vespidae): implications on the attachment mechanism.  Arthropod Structure & Development 33 (2004) 77–89.
  • 153.- 1995.- Lorus J. Milne y Margery Milne.-  Los insectos de la superfície del agua. Temas 2 Investigación y Ciencia.

Series de Anatomía de Insectos citadas en Aula IV
 
  • S1.- 2020 (4).- A.Palanca Soler. Aparato de oclusión en estigmas de Ropalóceros. Atlas Anat. Anim. (http://www.anatolab.net)
  • S2.- 2018 (9).- A.Palanca Soler. Fotografías de Insectos del Alto Aragón occidental. Atlas Anat. Anim. (http://www.anatolab.net)
  • S3.- 2017 (7).- A.Palanca Soler.- La cucaracha argentina Blaptica dubia; disecciones realizadas por los alumnos de Zoología II, curso 2015-2016. Atlas Anat. Anim. (http://www.anatolab.net)
Regreso al contenido